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Abstract—We describe a canonical form of electrolyte solution systems for the mathematical interpretation of solid-
liquid equilibrium. The canonical form is obtained from the analysis of the algebraic structure of electrolyte solution
systems and the Karush-Kuhn-Tucker (KKT) conditions for the minimization of the total Gibbs free energy. As a result,
the mathematical role of solid species in the solid-liquid equilibrium problem is explained as a Lagrange multiplier
of a sort of the linearly constrained optimization problem. This finding will add to the development of an efficient
numerical algorithm for the simulation of electrolyte solution systems.
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INTRODUCTION pretation of solid-liquid equilibrium stage. The canonical framework
reported here for examples of inorganic aerosols is general and then
Chemical processes related to electrolyte solutions involving preef great utility for developing an efficient numerical algorithm for
cipitated solid phases represent an important aspect of modern chempredicting the phase evolution of electrolyte solution systems.
ical engineering, in areas such as inorganic fine chemicals, phar-
maceuticals, and environmental protection [Hong, 2003]. In these ALGEBRAIC STRUCTURE OF ELECTROLYTE
processes, electrolytes in the aqueous solution dissociate completely SOLUTION SYSTEMS
or partly into corresponding ions, and solid phases are often pre-
cipitated depending on the process condition. For process simula- In this section, the canonical forms of the mass balance and the
tion, one must predict whether a given feed will be split into multiple chemical equilibrium relations are systematically derived to develop
phases, the number of phases and their identities, and the distriba-basis for the equation-based approach handling solid-liquid equi-
tion of species within these phases. The same requirements are algwium rationally.
charged to accurately assess the role that aerosols play in atmb-Canonical Stoichiometry
spheric phenomena. Atmospheric aerosols have a direct impact on An essential first step is to identify all the chemicals expected to
earth’s radiation balance, fog formation and cloud physics, and visibe present in the system. All these chemicals are refespddies
bility degradation as well as human health effect [Ma2@@0]. Consider alosedelectrolyte solution system of n speggs...,
Of central importance to these effects is the hygroscopic nature gf,, whose molecular structures are described biptivaula matrix
the atmospheric aerosols in moist air. Historically, hygroscopic prop-Apm:(al, ..., & ) defined by
erties of aerosols have been attributed to the inorganic fraction. i
One of the most challenging parts for electrolyte solution sys- x,=>3a¢, forj=1,...,n.
tems is the prediction of the partitioning of the inorganic compo- T
nents between aqueous and solid phases. A direct minimization dfhe species are constituted as the linear combination oflihsicn
the Gibbs free energy implicitly predicts phase evolution without anyelementsg,, ..., &, (note that the electronic charge is also a basic
a priori knowledge of the behavior of electrolyte solution. How- element). LefZ,, be the index set of the chemical species with n:
ever, the direct minimization approach disregards the specific math=[Z,,| as the number of species. The indeX ggtan be split into
ematical structure of the solid-liquid equilibrium problem. As a result, Z, andZ; with n: =[Z| and g =[Z| according to the aqueous and
it is computationally intensive to be used in large-scale applicationssolid phases, respectively. The formula matrices of both phases are
For an equation-based approach, provided that the set of mass bakfined by:
ance and equilibrium relations can be determined algorithmically to A =@) and A =(a)
reflect the actual state of electrolyte system under the varying pro- =" V% s NV
cess condition, its solution corresponds to the minimum of the Gibbs One very efficient formulation for the computation of electrolyte
free energy and thus predicts the physical state of electrolyte syshermodynamic equilibrium is based @ableau concepiMorel
tems correctly. To attack this problem, we present a canonical fornrand Morgan, 1972]. A smaller set of chemicals characterizing the
of electrolyte solution systems and then give the mathematical intersystem is defined @mponentsSpecifically, the components in a
system are defined as a set of chemicals that satisfies the following

To whom correspondence should be addressed. two criteria: (1) combinations of the components can be used to
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“This paper is dedicated to Professor Hyun-Ku Rhee on the occasiofiénts can be generated solely by a combination of other compo-
of his retirement from Seoul National University. nents. It is clear that no individual chemical entity is inherently ac-
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ceptable or unacceptable as a component, and that the components,—A,14=0
can only be acceptable or unacceptable as a complete set. Also, the—A 4,0
set of components is not unigue and any system can be representeck=0
by one of the possible sets of components. In electrolyte solution x!(u.—A!)=O0. (5)
) ey §
fgit:\r/ff’uﬁr;qur:iigie;?ggsbgZnsﬂ?oﬁ?%) aclasugizl;rgsg- The che.mi(.:al potential of each category of species is given by the
. . . . expression:

cies whose corresponding formula vectors  are linearly indepen-
dent (e, A;! exists) - these are the components, lef,—7Z, be the U=1+RTIng, (6)
set of the remaining+m(: =[Z,|) agueous species with the formula
matrix A, =(, )z, These are called the non-component species.

Once the species have been identified and a set of compone
chosen, there is only one way to write the reaction forming each Let
species from the chosen components with the unique equilibrium —RTInk,=AT£-p2 ©)

constant, and the stoichiometry for each species is uniquely define%.e the equilibrium constant vector associated with the canonical

Thellnformatlon re!atlng th? species o the componen.ts. can be Su.rgfoichiometry. After substituting the Egs. (6) and (7) into the Eq.
marized in a concise matrix with each column containing the stoi-

. . - o : (5) and rearranging, the KKT conditions are transformed into the
chiometric coefficients and the equilibrium constant for forming a . . . -
. i mass action laws with the mass balance constraint. The distribu-
particular species from the chosen components. Let

tion of species in the aqueous phase is governed by the following
A =(&):=A*A,, for r=pm,l, ¢, n,s, (@0} canonical speciation equilibrium reactions:

whereg, is the standard chemical potential vector at 1 atm and tem-
rRserature T and,alenotes the activity vector.

be thecomponent-basefbrmula matrix; these are also called the X< S ix, VilZ,
canonical stoichiometric matriassociated with the chemical equi- 107

Ilbgjm rea(ljctlljons 'fn the can<|3n|cal formr.] ) ¢ and the mass action law is written with the canonical speciation con-
enoted by, for n= pm.1, €, n, S'_t e, concentraﬂoq vgctqr 0 stant vectok, and the canonical stoichiometfig matrix:
each category of species. A schematic diagram of a solid-liquid equi-

librium (SLE) stage in electrolyte solution is shown in Fig. 1. Here  Ina=A,Ina~Ink, ®)

the mass balance of an SLE stage is given by: We have the mass action law in a logarithmic form here. An im-

X+A X +HAX=b, ) mediate consequence of the logarithmic form is that the mass action
law has a linear functional relation. Once the equilibrium constants
and stoichiometry for forming the non-component species from the

components are established, specifying the activities of all the com-
The determination of the equilibrium distribution in a closed sys- P pecitying

N i — i d . nimizati b nﬁ)_onents allows one to compute the corresponding equilibrium activi-
em at constant temperaluire and pressure IS a minimization probieNyag of g the species. The precipitation of salts is controlled by the

min G(X,m b.) ©)] canonical solid-liquid equilibrium reactions as follows:

s Xpm

whereb,[R" is a given component-based feed vector.
2. Canonical Equilibrium Relation

ks k s =
subject to the mass balance ¥2)0 andx=0, where the total Gibbs X<=>3 wXi  VKOZ

f Gis given b o
ree energy G is given by:
and the mass action law is then given by using the canonical precipi-

_, T T, T
G =HeXe +nXn * sXs @) tation constant vectdt, and the canonical stoichiometric matrix

and 4=, )z, fOr 7=¢, n, s, is the chemical potential vector for As

the species set The set of the solid species is further divided into Ing=AIna-Ink, ©)
Ie ={i0Z; x>0} andZ; ={i0Z; x,;=0}. The set of the solid
species actually formed,, isa priori unknown and is determined
by the minimization. The first order necessary conditions for amin- s,=1, forkJZ. and §.<1, fork1Z. (20)
imum G {.e, Karush-Kuhn-Tucker conditions in the canonical stoi-
chiometric form) are:

in which

3. Example: Typical Urban Aerosols

The predominant inorganic components of atmospheric aerosols
X A+A X +AX=b, in the 1um size range and smaller are ammonium, nitrate, and sul-
fate. Ammonia is present in virtually all terrestrial air masses and
condenses on aerosol particles where it neutralizes aerosol acidity.

e Xe, Xn Nitric acid is formed by gas phase oxidation of primary, &t@is-
b, ~——————| SLE stage sions and moves to the aerosol phase to equilibrate the gas and aero-
TTe— Xs sol phases. Sulfate is formed by gas phase oxidation,aireiGs

Fig. 1. Schematic diagram of a Solid-Liquid Equiliorium stage in transported to the aerosol phase, where it remains due to its low

electrolyte solution: x, for 7&=c, n, s, is the concentration ~ V&POor pressure. _
vector of components, non-components, and solid species,  In case of the typical urban aerosol [Pandis et al., 1995], the chem-
respectively and kis the component-based feed vector. icals expected to be present in the aqueous phase ingiDdEl H
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Table 1. Canonical stoichiometric matrix A, and canonical spe-  tion constant vectdt, of the solid phases of the typical urban aero-

ciation eqUi'ibriUm constant vector K1 of the typical urban sol based on the same set of Components as Table 1.
aerosol 4. Number of Solid Phases and Their Identities
H,O H*  HSG, NO,” NH; An electrolyte solution has imdependent components: it is the
Species AI:(ag”i) K, minimum number of chemicals that can be used to generate all the

chemical species present at equilibrium. According tdGilbs

Sar 0 -1 1 0 0 ktlfll Ky phase rulea chemical system has-m#2 degrees of freedom, in
NH, 0 -1 0 0 1 k. 2=KalK, which rTis the number of phases in equilibrium. In almost all sys-
OH" 1 -1 0 0 0 k,=1/K,

tems of interest, the temperature and total pressure of the system
are assumed to be known. Furthermore, since we are always inter-
ested in the agueous solution that contains dissolved electrolytes,
HSO,, SG, NO;, NH,, NH;, and OH and three speciation equi- the charge balance places another constraint on the system. There-
librium reactions can be considered: fore, the system of interest always has at least three pre-specified
. Ki . constraints, so the largest possible number of solid phases in equi-
HSO/(aq= "> ngaQ)+S+cj @ librium with an aqueous phase is &Jph,—2. Also, it may be im-
NH,(aq)+HO()=—>NH;,(aqg)+OH(aq) . ) . . S
H,0()<"> H'(ag)+OH (aq) possible for any S(_at of all the po§S|bIe solid species to coexist with
the aqueous solution. As a physical constrajrig, an index set of
where basic elements are H, O, N, S, and electronic charge. the solid species corresponding to the linearly-independent columns
Say we chose a®mponent$,0, H', HSQ, NO;, and NH. of A,. For instance, (NBLSQ,, (NH,);H(SQ),, and NHHSQ, can-
Five of the species are chemically identical to corresponding comnot exist simultaneously. If (NSO, and (NH),H(SQ,), coexist
ponents, so obviously those species are formed from the compdn an aerosol particle, the following condition is satisfied:
nents directly. The remaining three species; (SqH,, and OH)

can be generated by appropriate combinations of the components a,,,8,., :k—ls(ﬂ“—*u(s—gi
as follows: 5 (NH.SO
nt . " and thus
S} (ac)<"> HSQ(aq)-H'(aq)
NHg(aQ) k: NH,(ag)-H (aq) S, — kSv(NHa)zH(SQ)z <1
OH (ag)<> NO()-H'(aq) M K soKs wmso

where k,=1/K,, k, ,=KJ/K;, and k ;=1/K. Table 1 shows a canon- That is, NHHSQO, cannot coexist with two other solids in a single
ical stoichiometric matri¥A, and canonical speciation equilibrium aerosol particle. Fig. 2 shows the conceivable configurations of solid-
constant vectdk, obtained from the above arguments. liquid equilibrium in the typical urban aerosol.

If a solid phase exists in the aerosol, then it represents a separateAt present, the number of solid phases|Z] and their identi-
phase whose activity is fixed. The rules for defining the stoichiome-ties Z, are determined in advance by using phase diagrams or an
try of the solid species are identical to those for forming the aqueenumerative method. The former method used in the most of the
ous species, and the precipitation constanisksimply obtained  equation-based models is unsuitable for complicated systems and
from the solubility product g of the solid species and k. For infeasible to calculate continuously. In the latter method, all combi-
the typical urban aerosol, the possible species for the solid phase amations should be tried, and good initial values are often required
(NH,),SO,, (NH);H(SO),, NH,HSQO, and NHNO.. The canonical  to calculate the activity coefficients of liquid components reliably.
solid-liquid equilibrium reactions are as follows: The computational burden and the difficulty of estimating initial val-

(NH.),.SO(s)<"> 2NH(aq)+HSQ(ag)-H'(aq) uesf limit the use _of this r_net_hod _iq practic_e. Another method based

(NH,),HSO,(5)<“% 3NH,(aq)+2HSQfag)-H' (aq) on free gqergy_mlnlmlzatlon |mp!|C|tIy predicts the_ number of phases

NH,HSO,(s)<*> NH,(ag)+HSQ(aq) :?md their |dent|t|e_s through _nonllne_a_r programming. However, non-

NH,NOL($)<“*> NH, (aq)+NQ (aq) linear programming for a direct minimization of the free energy is

where k=K, K, 1, k=K, K1, ks =K;,, and k,=K,,. Table2
shows canonical stoichiometric matAx and canonical precipita-

Table 2. Canonical stoichiometric matrix A and canonical pre- @
cipitation constant vector k, of the typical urban aerosol

H,O H HSO NO; NH;

Solid species A=(5 Kq
P @) (@) (b) ©
(NH,).SO, 0 ol 02 kA o Conceivable configurations of SLE stages in th typical
_ 0 3 =K. .k 1g. 2. Concelvable con_guratlons (0] stages In the IcCal ur-
e ban aerosol: (@)Z.=(1), {2}, {3}, and {4}, (b) Z={1, 2} {2,
HSO, 27K 3}, {1, 4}, and {2, 4}, (CFL={1, 2, 4} and {2, 3, 4}, (1: (NH,
NH,NO, 0 0 © 1 1 k=K, S0, 2: (NH,),H(SO,),, 3: NH,HSO,, 4: NH,NO,).
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computationally intensive, making its use in large-scale process sinf1987].
ulation unreliable.
As a result, we observe that an SLE stage problem can be viewed
MATHEMATICAL ROLE OF SOLID SPECIES as theKKT conditions of the linearly constrained optimization prob-
IN AN SLE STAGE lem (14) that satisfy the following equations:
N T o
Here a mathematical role of solid species in solid-liquid equilib- Def (x) =T exp(x) ~bx
rium is exploited to identify the number of phases and their identi-

OoO
. . . . . h(&X)=T&-y(X) + =0
ties rationally. We work on the following additional notation: (€x) =T~y %b %

n

7 = T JT\T

/)\(:_ln(x° X and then the mathematical role of solid species in an SLE stage is a
y=in(@ ay' Lagrange multlpller\ associated to t_he Ilneqr |_nequallty constraints.
E=Ina Rece_nt literature on the nur_ngncal_ optimization for the linearly

b =—Ink constrained problem can be divided into two main classes. Qn the
b :—lnkn one hand, there are “active-set” approaches._ In these_ algorithms a
TS: ( SA y model of f (fqr exgmple, the_ qua_ldratlc approximation) is formed at
A, _ Aln each “outer” iteration and minimized over some subset of the feasi-

ble region. The algorithm tends to move along edges and faces of
in whichXOR". Then the mass balance has the corresponding formthe boundary of the feasible set, changing the set of currently active
T e AT constraints by at most one element on each “inner” iteration. A sec-

T exp(x) ~AA =b (1D ond class of methods, known as “gradient projection” methods, al-
In turn, the mass action laws for the distribution of the aqueous spdew more substantial changes to the active set at each iteration by

cies and the solid precipitation are written by: choosing a direction g (for exampléf, or some scaled version of
it) and searching along the piecewise linear pafh &f), where
oy =H0H a>0 and P is the projection onto the feasible set. The optimization
“TE+y(R)=0"0 (12) : > projection : - e opam.
Ob, O techniques mentioned can give the rational method determining the

number of phases and their identities automatically through the equa-

and tion-based approach.

A,&E-b,=0
A=0 CONCLUSIONS
A'(A&-b,)=0. (13)
In this work, our purpose was to investigate the computational
aJf'ramework providing the set of mass balance and equilibrium rel-
ations reflecting the actual state of the electrolyte system under the
varying process condition. From the canonical formulation of elec-
minf(&) subjectto A,&=b, (14) trolyte solution systems, we realized the mathematical role of solid
¢ species in solid-iquid equilibrium as a Lagrange multiplier of a sort
where f is a smooth function. We say thafl R* is a local solu-  of the linearly constrained optimization problem. This observation

This mass balance and mass action laws of variational inequ
ity type can be viewed aarush-Kuhn-Tuckesystem. Consider
the following linearly constrained optimization problem:

tion of (14) if naturally links the solid-liquid equilibrium problem to optimization
techniques such as active-set approaches and gradient projection
« it is feasible for (14) - that i8,,é=b,; methods in order to identify the number of phases and their identi-
« there is a scalgr>0 such that #)=f(&") for all feasible §- ties in the equation-based approach.
¢li<e
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