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Abstract−−−−We describe a canonical form of electrolyte solution systems for the mathematical interpretation of solid-
liquid equilibrium. The canonical form is obtained from the analysis of the algebraic structure of electrolyte solution
systems and the Karush-Kuhn-Tucker (KKT) conditions for the minimization of the total Gibbs free energy. As a result,
the mathematical role of solid species in the solid-liquid equilibrium problem is explained as a Lagrange multiplier
of a sort of the linearly constrained optimization problem. This finding will add to the development of an efficient
numerical algorithm for the simulation of electrolyte solution systems.
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INTRODUCTION

Chemical processes related to electrolyte solutions involving pre-
cipitated solid phases represent an important aspect of modern chem-
ical engineering, in areas such as inorganic fine chemicals, phar-
maceuticals, and environmental protection [Hong, 2003]. In these
processes, electrolytes in the aqueous solution dissociate completely
or partly into corresponding ions, and solid phases are often pre-
cipitated depending on the process condition. For process simula-
tion, one must predict whether a given feed will be split into multiple
phases, the number of phases and their identities, and the distribu-
tion of species within these phases. The same requirements are also
charged to accurately assess the role that aerosols play in atmo-
spheric phenomena. Atmospheric aerosols have a direct impact on
earth’s radiation balance, fog formation and cloud physics, and visi-
bility degradation as well as human health effect [Martin, 2000].
Of central importance to these effects is the hygroscopic nature of
the atmospheric aerosols in moist air. Historically, hygroscopic prop-
erties of aerosols have been attributed to the inorganic fraction.

One of the most challenging parts for electrolyte solution sys-
tems is the prediction of the partitioning of the inorganic compo-
nents between aqueous and solid phases. A direct minimization of
the Gibbs free energy implicitly predicts phase evolution without any
a priori knowledge of the behavior of electrolyte solution. How-
ever, the direct minimization approach disregards the specific math-
ematical structure of the solid-liquid equilibrium problem. As a result,
it is computationally intensive to be used in large-scale applications.
For an equation-based approach, provided that the set of mass bal-
ance and equilibrium relations can be determined algorithmically to
reflect the actual state of electrolyte system under the varying pro-
cess condition, its solution corresponds to the minimum of the Gibbs
free energy and thus predicts the physical state of electrolyte sys-
tems correctly. To attack this problem, we present a canonical form
of electrolyte solution systems and then give the mathematical inter-

pretation of solid-liquid equilibrium stage. The canonical framewo
reported here for examples of inorganic aerosols is general and
of great utility for developing an efficient numerical algorithm fo
predicting the phase evolution of electrolyte solution systems.

ALGEBRAIC STRUCTURE OF ELECTROLYTE 
SOLUTION SYSTEMS

In this section, the canonical forms of the mass balance and
chemical equilibrium relations are systematically derived to deve
a basis for the equation-based approach handling solid-liquid e
librium rationally.
1. Canonical Stoichiometry

An essential first step is to identify all the chemicals expected
be present in the system. All these chemicals are referred to species.
Consider a closed electrolyte solution system of n species χ1, …,
χn, whose molecular structures are described by the formula matrix

pm=( , …, ) defined by

for j=1, …, n.

The species are constituted as the linear combination of the m basic
elements, ε1, …, εm (note that the electronic charge is also a ba
element). Let �pm be the index set of the chemical species with
=|�pm| as the number of species. The index set �pm can be split into
�l and �s with nl: =|�l| and ns: =|�s| according to the aqueous an
solid phases, respectively. The formula matrices of both phase
defined by:

and .

One very efficient formulation for the computation of electroly
thermodynamic equilibrium is based on Tableau concept [Morel
and Morgan, 1972]. A smaller set of chemicals characterizing
system is defined as components. Specifically, the components in a
system are defined as a set of chemicals that satisfies the follo
two criteria: (1) combinations of the components can be use
generate all the species in the system, and (2) none of the co
nents can be generated solely by a combination of other com
nents. It is clear that no individual chemical entity is inherently 
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ceptable or unacceptable as a component, and that the components
can only be acceptable or unacceptable as a complete set. Also, the
set of components is not unique and any system can be represented
by one of the possible sets of components. In electrolyte solution
systems, the aqueous species formula matrix l∈�

m×nl is assumed
to have full row rank. Let �c(⊂�l) be a set of m(: =|�c|) aqueous spe-
cies whose corresponding formula vectors  are linearly indepen-
dent (i.e., c

−1 exists) - these are the components; let �n=�l−�c be the
set of the remaining nl−m(: =|�n|) aqueous species with the formula
matrix n: =( )i∈�n

. These are called the non-component species.
Once the species have been identified and a set of components

chosen, there is only one way to write the reaction forming each
species from the chosen components with the unique equilibrium
constant, and the stoichiometry for each species is uniquely defined.
The information relating the species to the components can be sum-
marized in a concise matrix with each column containing the stoi-
chiometric coefficients and the equilibrium constant for forming a
particular species from the chosen components. Let

for π=pm, l, c, n, s, (1)

be the component-based formula matrix; these are also called the
canonical stoichiometric matrix associated with the chemical equi-
librium reactions in the canonical form.

Denoted by xπ, for π=pm, l, c, n, s, the concentration vector of
each category of species. A schematic diagram of a solid-liquid equi-
librium (SLE) stage in electrolyte solution is shown in Fig. 1. Here
the mass balance of an SLE stage is given by:

xc+Anxn+Asxs=bc (2)

where bc∈�
m is a given component-based feed vector.

2. Canonical Equilibrium Relation
The determination of the equilibrium distribution in a closed sys-

tem at constant temperature and pressure is a minimization problem:

(3)

subject to the mass balance (2), xl>0 and xs≥0, where the total Gibbs
free energy G is given by:

(4)

and µπ=(µπ, i)i∈�π, for π=c, n, s, is the chemical potential vector for
the species set π. The set of the solid species is further divided into
�s: ={i ∈�s: xs, i>0} and �s: ={i ∈�s: xs, i=0}. The set of the solid
species actually formed, �s, is a priori unknown and is determined
by the minimization. The first order necessary conditions for a min-
imum G (i.e., Karush-Kuhn-Tucker conditions in the canonical stoi-
chiometric form) are:

xc+Anxn+Asxs=bc

µn−An

Tµc=0.
µs−As

Tµc≥0
xs≥0.

xs

T
(µs−As

Tµc)=0. (5)

The chemical potential of each category of species is given by
expression:

µπ=µπ
o+RTlnaπ (6)

where µπ
o is the standard chemical potential vector at 1 atm and t

perature T and aπ denotes the activity vector.

Let
−RTlnkπ=Aπ

Tµc

o−µπ
o (7)

be the equilibrium constant vector associated with the canon
stoichiometry. After substituting the Eqs. (6) and (7) into the E
(5) and rearranging, the KKT conditions are transformed into 
mass action laws with the mass balance constraint. The dist
tion of species in the aqueous phase is governed by the follow
canonical speciation equilibrium reactions:

�i∈�n

and the mass action law is written with the canonical speciation 
stant vector kn and the canonical stoichiometric An matrix:

lnan=An

T
lnac− lnkn (8)

We have the mass action law in a logarithmic form here. An 
mediate consequence of the logarithmic form is that the mass a
law has a linear functional relation. Once the equilibrium consta
and stoichiometry for forming the non-component species from
components are established, specifying the activities of all the c
ponents allows one to compute the corresponding equilibrium ac
ties of all the species. The precipitation of salts is controlled by
canonical solid-liquid equilibrium reactions as follows:

�k∈�s

and the mass action law is then given by using the canonical pre
tation constant vector ks and the canonical stoichiometric matri
As:

lnsp=As

T
lnac− lnks (9)

in which

sp, k=1, for k∈�s and sp, k<1, for k∈�s. (10)

3. Example: Typical Urban Aerosols
The predominant inorganic components of atmospheric aero

in the 1µm size range and smaller are ammonium, nitrate, and 
fate. Ammonia is present in virtually all terrestrial air masses a
condenses on aerosol particles where it neutralizes aerosol ac
Nitric acid is formed by gas phase oxidation of primary NOx emis-
sions and moves to the aerosol phase to equilibrate the gas and
sol phases. Sulfate is formed by gas phase oxidation of SO2 and is
transported to the aerosol phase, where it remains due to its
vapor pressure.

In case of the typical urban aerosol [Pandis et al., 1995], the ch
+
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− 1Âπ,
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χi    i j
nχj,

j �c∈
∑kn, i
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χk    jk
s χ j,

j �c∈
∑ks, k

�

Fig. 1. Schematic diagram of a Solid-Liquid Equilibrium stage in
electrolyte solution: xππππ, for ππππ=c, n, s, is the concentration
vector of components, non-components, and solid species,
March, 2004

icals expected to be present in the aqueous phase include H2O, H ,respectively and bc is the component-based feed vector.
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HSO4
−, SO4

2−, NO3
−, NH3, NH4

+, and OH− and three speciation equi-
librium reactions can be considered:

HSO4

−
(aq) H+(aq)+SO4

2−
(aq)

NH3(aq)+H2O(l) NH4
+(aq)+OH−(aq)

H2O(l) H+(aq)+OH
−
(aq)

where basic elements are H, O, N, S, and electronic charge.
Say we chose as components H2O, H+, HSO4

−, NO3
−, and NH4

+.
Five of the species are chemically identical to corresponding com-
ponents, so obviously those species are formed from the compo-
nents directly. The remaining three species (SO4

2−, NH3, and OH−)
can be generated by appropriate combinations of the components
as follows:

SO4
2−

(aq) HSO4
−
(aq)−H+(aq)

NH3(aq) NH4

+
(aq)−H

+
(aq)

OH
−
(aq) N2O(l)−H+(aq)

where kn, 1=1/K1, kn, 2=K2/K3, and kn, 3=1/K3. Table 1 shows a canon-
ical stoichiometric matrix An and canonical speciation equilibrium
constant vector kn obtained from the above arguments.

If a solid phase exists in the aerosol, then it represents a separate
phase whose activity is fixed. The rules for defining the stoichiome-
try of the solid species are identical to those for forming the aque-
ous species, and the precipitation constant ks,k is simply obtained
from the solubility product Kp,k of the solid species and kn, i’s. For
the typical urban aerosol, the possible species for the solid phase are
(NH4)2SO4, (NH4)3H(SO4)2, NH4HSO4 and NH4NO3. The canonical
solid-liquid equilibrium reactions are as follows:

(NH4)2SO(s) 2NH4

+
(aq)+HSO4

−
(aq)−H

+
(aq)

(NH4)3HSO4(s) 3NH4

+
(aq)+2HSO4

−
(aq)−H

+
(aq)

NH4HSO4(s) NH4

+
(aq)+HSO4

−
(aq)

NH4NO3(s) NH4

+
(aq)+NO3

−
(aq)

where ks, 1=Kp, 1kn, 1, ks, 2=Kp, 2kn, 1, k3, 1=K3, 1, and k4, 1=K4, 1. Table 2
shows canonical stoichiometric matrix As and canonical precipita-

tion constant vector ks of the solid phases of the typical urban aer
sol based on the same set of components as Table 1.
4. Number of Solid Phases and Their Identities

An electrolyte solution has nc independent components: it is th
minimum number of chemicals that can be used to generate a
chemical species present at equilibrium. According to the Gibbs
phase rule, a chemical system has nc−π+2 degrees of freedom, in
which π is the number of phases in equilibrium. In almost all sy
tems of interest, the temperature and total pressure of the sy
are assumed to be known. Furthermore, since we are always 
ested in the aqueous solution that contains dissolved electrol
the charge balance places another constraint on the system. T
fore, the system of interest always has at least three pre-spe
constraints, so the largest possible number of solid phases in 
librium with an aqueous phase is sup|�s|=nc−2. Also, it may be im-
possible for any set of all the possible solid species to coexist 
the aqueous solution. As a physical constraint, �s is an index set of
the solid species corresponding to the linearly-independent colu
of As. For instance, (NH4)2SO4, (NH4)3H(SO4)2, and NH4HSO4 can-
not exist simultaneously. If (NH4)2SO4 and (NH4)3H(SO4)2 coexist
in an aerosol particle, the following condition is satisfied:

and thus

That is, NH4HSO4 cannot coexist with two other solids in a sing
aerosol particle. Fig. 2 shows the conceivable configurations of s
liquid equilibrium in the typical urban aerosol.

At present, the number of solid phases s=|�s| and their identi-
ties �s are determined in advance by using phase diagrams o
enumerative method. The former method used in the most of
equation-based models is unsuitable for complicated systems
infeasible to calculate continuously. In the latter method, all com
nations should be tried, and good initial values are often requ
to calculate the activity coefficients of liquid components reliab
The computational burden and the difficulty of estimating initial v
ues limit the use of this method in practice. Another method ba
on free energy minimization implicitly predicts the number of pha
and their identities through nonlinear programming. However, n
linear programming for a direct minimization of the free energy

�

K1

�

K2

�

K3

�

kn, 1

�

kn, 2

�

kn, 3

�

ks,1

�

ks,2

�

ks,3

�

ks,4

aNH4
+aHSO4

−  = 
ks NH4( )3H SO4( )2,

ks NH4( )2SO4,
--------------------------

sp NH4HSO4,  = 
ks NH4( )3H SO4( )2,

ks NH4( )2SO4, ks NH4HSO4,

--------------------------------------- 1.<

n

Table 1. Canonical stoichiometric matrix An and canonical spe-
ciation equilibrium constant vector kn of the typical urban
aerosol

H2O H+ HSO4
− NO3

− NH4
+

Species An

T
=(a

n

ji) kn

SO4
2− 0 −1 1 0 0 kn, 1=1/K1

NH3 0 −1 0 0 1 kn, 2=K2/K3

OH− 1 −1 0 0 0 kn, 3=1/K3

Table 2. Canonical stoichiometric matrix As and canonical pre-
cipitation constant vector kn of the typical urban aerosol

H2O H+ HSO4
− NO3

− NH4
+

Solid species As
T
=(a

s
ji) ks

(NH4)2SO4 0 −1 1 0 2 ks, 1=Kp, 1kn, 1

(NH4)3H(SO4)2 0 −1 2 0 3 ks, 2=Kp, 2kn, 1

NH4HSO4 0 −0 1 0 1 ks, 3=Kp, 3

NH4NO3 0 −0 0 1 1 ks, 4=Kp, 4

Fig. 2. Conceivable configurations of SLE stages in the typical ur-
ban aerosol: (a) �s={1}, {2}, {3}, and {4}, (b) �s={1, 2}, {2,
3}, {1, 4}, and {2, 4}, (c) �s={1, 2, 4} and {2, 3, 4}, (1: (NH4)2

SO , 2: (NH ) H(SO ) , 3: NH HSO , 4: NH NO ).
Korean J. Chem. Eng.(Vol. 21, No. 2)
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computationally intensive, making its use in large-scale process sim-
ulation unreliable.

MATHEMATICAL ROLE OF SOLID SPECIES
IN AN SLE STAGE

Here a mathematical role of solid species in solid-liquid equilib-
rium is exploited to identify the number of phases and their identi-
ties rationally. We work on the following additional notation:

λ=xs

ξ=lnac

bn=− lnkn

bs=− lnks

in which ∈�nl. Then the mass balance has the corresponding form:

(11)

In turn, the mass action laws for the distribution of the aqueous spe-
cies and the solid precipitation are written by:

(12)

and

(13)

This mass balance and mass action laws of variational inequal-
ity type can be viewed as a Karush-Kuhn-Tucker system. Consider
the following linearly constrained optimization problem:

subject to Aλξ≥bλ (14)

where f is a smooth function. We say that ξ *∈�nc is a local solu-
tion of (14) if

• it is feasible for (14) - that is, Aλξ≥bλ;
• there is a scalar ρ>0 such that f(ξ)≥f(ξ *) for all feasible ||ξ−

ξ *||<ρ.

The first-order necessary conditions for the optimality, also known
as the Karush-Kuhn-Tucker conditions, are given in the following
theorem.

Theorem 1 Suppose that ξ * is a local solution of (14) and that
is differentiable in a neighborhood of ξ *. Then there is a vector λ
such that the following conditions hold:

[1987].

As a result, we observe that an SLE stage problem can be vie
as the KKT conditions of the linearly constrained optimization pro
lem (14) that satisfy the following equations:

and then the mathematical role of solid species in an SLE stage
Lagrange multiplier λ associated to the linear inequality constraint

Recent literature on the numerical optimization for the linea
constrained problem can be divided into two main classes. On
one hand, there are “active-set” approaches. In these algorith
model of f (for example, the quadratic approximation) is formed
each “outer” iteration and minimized over some subset of the fe
ble region. The algorithm tends to move along edges and face
the boundary of the feasible set, changing the set of currently a
constraints by at most one element on each “inner” iteration. A 
ond class of methods, known as “gradient projection” methods
low more substantial changes to the active set at each iteratio
choosing a direction g (for example, ∇f or some scaled version of
it) and searching along the piecewise linear path P(ξ−αg), where
α>0 and P is the projection onto the feasible set. The optimiza
techniques mentioned can give the rational method determining
number of phases and their identities automatically through the e
tion-based approach.

CONCLUSIONS

In this work, our purpose was to investigate the computatio
framework providing the set of mass balance and equilibrium 
ations reflecting the actual state of the electrolyte system unde
varying process condition. From the canonical formulation of el
trolyte solution systems, we realized the mathematical role of s
species in solid-liquid equilibrium as a Lagrange multiplier of a s
of the linearly constrained optimization problem. This observat
naturally links the solid-liquid equilibrium problem to optimizatio
techniques such as active-set approaches and gradient proje
methods in order to identify the number of phases and their ide
ties in the equation-based approach.
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